Cysteine substitutions in apolipoprotein A-I primary structure modulate paraoxonase activity.

نویسندگان

  • M N Oda
  • J K Bielicki
  • T Berger
  • T M Forte
چکیده

Paraoxonase (PON) is transported primarily on apolipoprotein A-I (apoA-I) -containing high-density lipoprotein (HDL) and is thought to protect against early atherogenic events including low-density lipoprotein (LDL) oxidation and monocyte migration. It has been proposed that apoA-I may be necessary for PON's association with plasma HDL. On the basis of this, we examined the effect of apoA-I on PON's enzymatic activity and its ability to associate with HDL. Additionally, we examined whether changes in apoA-I primary structure (cysteine substitution mutations) could modulate these effects. Chinese hamster ovary cells stably transfected with human PON1A cDNA were incubated in the presence and absence of recombinant wild-type apoA-I (apoA-I(WT)) and specific Cys substitution mutations. Extracellular accumulation of PON activity in the presence of apoA-I(WT) was 0.095 +/- 0.013 unit/mg of cell protein (n = 7) compared to 0.034 +/- 0.010 unit/mg of cell protein in the absence of apoA-I (n = 7), a 2.79-fold increase in activity when apoA-I was incubated with the cells. Lipid-free apoA-I did not increase PON activity, while preformed nascent HDL increased PON activity only 30%, suggesting that maximal PON activity is lipid-dependent and requires coassembly of PON and apoA-I on nascent HDL. The cysteine mutations R10C, R27C, and R61C significantly increased (p < 0.01) PON activity 32.6% +/- 14.7%, 31.6% +/- 18.9%, and 27.4% +/- 20%, respectively, over that of wild type (WT). No changes in PON activity were observed with apoA-I cysteine substitution mutations in the C-terminal portion of the protein. The data suggest that, for optimal PON activity, coassembly of the enzyme onto nascent HDL is required and that the N-terminal region of apoA-I may be important in the assembly process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloperoxidase, paraoxonase-1, and HDL form a functional ternary complex.

Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein-associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some...

متن کامل

بررسی پلی‌مورفیسم L55M ژن پاراکسوناز1 با ترکیب اسیدهای چرب فسفولیپیدهای موجود در لیپو‌پروتیین‌های با دانسیته بالا

Background: Paraoxonase-1 (PON1) moves with high-density lipoprotein (HDL) particles in blood and prevents low-density lipoprotein (LDL) particles from oxidation. The aims of this study were to investigate the correlation between fatty acid composition of HDL phospholipids with pon-1 polymorphisms and response to lovastatin treatment in people with high blood cholesterol. Methods: In this desc...

متن کامل

Molecular characterization of apolipoprotein A-I from the skin mucosa of Cyprinus carpio

Apolipoprotein A-I is the most abundant protein in Cyprinus carpio plasma that plays an important role in lipid transport and protection of the skin by means of its antimicrobial activity. A 527 bp cDNA fragment encoding C terminus part of apoA-I from the skin mucosa of common carp was isolated using RT-PCR. After GenBank database searching, a partial sequence containing a coding sequence (CDS)...

متن کامل

Caffeine Increases Apolipoprotein A-1 and Paraoxonase-1 but not Paraoxonase-3 Protein Levels in Human-Derived Liver (HepG2) Cells

BACKGROUND Apolipoprotein A-1, paraoxonase-1 and paraoxonase-3 are antioxidant and anti-atherosclerotic structural high-density lipoprotein proteins that are mainly synthesized by the liver. No study has ever been performed to specifically examine the effects of caffeine on paraoxonase enzymes and on liver apolipoprotein A-1 protein levels. AIMS To investigate the dose-dependent effects of ca...

متن کامل

Active Site Hydrophobicity and the Convergent Evolution of Paraoxonase Activity in Structurally Divergent Enzymes: The Case of Serum Paraoxonase 1

Serum paraoxonase 1 (PON1) is a native lactonase capable of promiscuously hydrolyzing a broad range of substrates, including organophosphates, esters, and carbonates. Structurally, PON1 is a six-bladed β-propeller with a flexible loop (residues 70-81) covering the active site. This loop contains a functionally critical Tyr at position 71. We have performed detailed experimental and computationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 40 6  شماره 

صفحات  -

تاریخ انتشار 2001